Regulation of lung manganese superoxide dismutase: species variation in response to lipopolysaccharide.

نویسندگان

  • Ghenima Dirami
  • Donald Massaro
  • Linda Biadasz Clerch
چکیده

Lipopolysaccharide (LPS) treatment increases survival of rats, but not of mice, during hyperoxia. Manganese superoxide dismutase (Mn SOD) in the lung plays a critical role in LPS-induced tolerance to hyperoxia in rats. Therefore, we now compared the response of lung Mn SOD with treatment of mice and rats with LPS. LPS treatment of rats increased Mn SOD activity and protein concentration, did not change its specific activity, increased Mn SOD mRNA concentration 35-fold, and elevated Mn SOD synthesis 50% without changing general protein synthesis. LPS treatment of mice did not alter any of these parameters except for a 16-fold increase in Mn SOD mRNA concentration. Mn SOD translational efficiency (synthesis/mRNA concentration) was diminished 93% in rat lung and 76% in mouse lung by treatment with LPS. However, the absolute translational efficiency was twofold higher in lungs of LPS-treated rats than in lungs of LPS-treated mice. The failure of LPS to raise Mn SOD activity in mouse lungs is due, at least in part, to a smaller increase in Mn SOD mRNA and lower translational efficiency in LPS-treated mice than in LPS-treated rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALUNG May 20/5

Dirami, Ghenima, Donald Massaro, and Linda Biadasz Clerch. Regulation of lung manganese superoxide dismutase: species variation in response to lipopolysaccharide. Am. J. Physiol. 276 (Lung Cell. Mol. Physiol. 20): L705–L708, 1999.—Lipopolysaccharide (LPS) treatment increases survival of rats, but not of mice, during hyperoxia. Manganese superoxide dismutase (Mn SOD) in the lung plays a critical...

متن کامل

The Role of Manganese Superoxide Dismutase in Inflammation Defense

Antioxidant enzymes maintain cellular redox homeostasis. Manganese superoxide dismutase (MnSOD), an enzyme located in mitochondria, is the key enzyme that protects the energy-generating mitochondria from oxidative damage. Levels of MnSOD are reduced in many diseases, including cancer, neurodegenerative diseases, and psoriasis. Overexpression of MnSOD in tumor cells can significantly attenuate t...

متن کامل

Differential Expression of Mitochondrial Manganese Superoxide Dismutase (SOD) in Triticum aestivum Exposed to Silver Nitrate and Silver Nanoparticles

Background: The increasing use of nanoparticles (NPs) may have negative impacts on both organisms andthe environment. Objectives: The differential expression of mitochondrial manganese superoxide dismutase (MnSOD) gene in wheat in response to silver nitrate nanoparticles (AgNPs) and AgNO3 was investigated. Materials and Methods: A quantita...

متن کامل

Manganese-containing superoxide dismutase overexpression causes phenotypic reversion in SV40-transformed human lung fibroblasts.

Manganese superoxide dismutase (MnSOD) has been found to be low in a wide range of tumor cells as well as in vitro-transformed cell lines and has been implicated as a new type of tumor suppressor gene. The relationship between MnSOD activity and the malignant phenotype was studied by transfection of MnSOD cDNA into the SV40-transformed human fibroblast cell line WI-38 VA13 subline 2RA. The inte...

متن کامل

The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells.

Pyocyanin, produced by Pseudomonas aeruginosa, has many deleterious effects on human cells that relate to its ability to generate reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Human cells possess several mechanisms to protect themselves from ROS, including manganese superoxide dismutase (MnSOD), copper zinc superoxide dismutase (CuZnSOD), and catalase. Given the link ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 276 5  شماره 

صفحات  -

تاریخ انتشار 1999